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ABSTRACT: The atomization energy and heat of formation of CO2

+ are computed using 

the diffusion Monte Carlo (DMC) variant of quantum Monte Carlo (QMC) and compared 

with values determined at the Moller-Plesset second order (MP2), a generalized gradient 

approximation density functional theory  (B3LYP-DFT), the coupled-cluster singles-

doubles with perturbative triples [CCSD(T)] levels of theory.  Hartree-Fock (HF) and 

complete active space self-consistent field (CASSCF) trial functions were used in the 

DMC calculations. A CASSCF trial function (TF) was found to yield an 8.1 kcal/mol 

improvement for both properties relative to the HF TF value. The DMC calculation with 

the HF TF gave an atomization energy of 374.0 kcal/mol, while the DMC result with the 

CASSCF TF yielded 382.1 kcal/mol; the experimental atomization energy is 381 kcal/mol. 

The DMC heat of formation is: 234.7 kcal/mol using the HF TF and 226.7 kcal/mol using 

the CASSCF TF.  These values lie closer to experiment than results obtained from the 

MP2, DFT, and CCSD(T) methods, all at the complete basis set limit.  

The bonding character of CO2
+ and CS2

+ was examined using the electron 

localization function (ELF) method. The HF, MP2, and B3LYP-DFT wave functions were 

projected onto the single-triple and double-double resonance forms of the molecules to 

determine the relative contribution of the two forms to the ground state geometry.  The 
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double-double resonance form was found to be the larger contributor to the ground state 

for both systems. 

 

KEYWORDS: Quantum Monte Carlo, CO2
+ heat of formation, CS2

+, electron localization 

function, quantum-chemical calculations 
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Introduction 
 

 

The CO2
+ molecule presents difficulties for the calculation of various properties, 

even though the system has the well-defined D∞h symmetry experimentally in the 

electronic ground state [1, 2]. Moller-Plesset second order (MP2) and higher orders of MP 

perturbation theory generate symmetry breaking, reducing the symmetry to C∞v until one 

reaches the MP5 level [3, 4].  The C-O bond length has previously been accurately 

computed using several other levels of theory. In particular B3LYP-DFT[4], a generalized 

gradient approximation density functional theory method, recovers the experimentally 

observed distance. It is also noted that methods that only include single and double 

substitutions from a single determinant starting point such as MP2, configuration 

interaction singles (CIS) and CI singles and doubles (CISD) give an incorrect description 

of the asymmetric stretching frequency ω3 [4].  Methods that include triple and higher 

substitutions yield improved values of this quantity  

 

Problems in accurately computing the geometry of CO2
+ are postulated to arise 

because of competition between two resonant forms of the molecule: a single-triple (S-T) 

and a double-double (D-D) bonded structures [5] (Fig. 1).  Overemphasis of the D-D 

structure results in asymmetric stretching frequencies that are high compared to 

experiment, while overemphasis of the S-T structure leads to low asymmetric stretching 

frequencies and symmetry breaking. Earlier studies using a variety of methods have noted 

that triple excitations are required to give the correct geometry as well as accurate 

description of the normal modes of the system [4]. 
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Quantum Monte Carlo (QMC), a method that exactly solves the Schrödinger 

equation through stochastic sampling of a trial wave function, has been found successful in 

treating the ground states of systems that have posed problems for other electronic 

structure methods.   Considering the difficulties that have been encountered with CO2
+ 

using other approaches such as MP2, CIS, and CISD, we chose to examine this system 

with QMC in the more accurate diffusion Monte Carlo (DMC) form of the method. We 

have computed the atomization energy and heat of formation using DMC and compare 

these results with those generated with the restricted open shell Hartree-Fock (ROHF), 

MP2, local density approximation (LDA), B3LYP-DFT, and coupled-cluster with single 

and double excitations with inclusion of triple excitation by perturbation theory (CCSD(T)) 

methods.  

 

To our knowledge a study to determine and quantify the contribution of the 

resonance structures to the ground state geometry and frequency of CO2
+ has not been 

carried out.  We have determined the bonding character of this system at the experimental 

(symmetric) C-O bond length of 1.177A [1, 2, 4] and two asymmetric geometries using the 

electron localization function (ELF) to determine the contributions of the resonance forms 

to the ground state geometry. The ELF findings also shed light on the contribution of 

resonance forms to the asymmetric stretching frequency at several levels of theory. 

 

While symmetry breaking is encountered in the MP2 CO2
+ calculations, similar 

calculations of isovalent CS2
+ do not reveal symmetry breaking even though the ground 
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and first-excited states are more closely spaced (20,975 cm-1) than in CO2
+  (27,300 cm-1) 

[2, 6].   Because of the closer spacing in CS2
+, it might be expected that vibronic state 

mixing could play a role leading to dominance in the ground state of the S-T configuration. 

With the ELF method, we show that charge localization is more important than the 

separation of the states in determining the dominant resonance structure for the ground 

state geometry.   

The remainder of the paper is organized as follows: Sec. II contains a brief 

summary of DMC, highlighting the basic ideas and concepts of the method; and Sec. III 

presents the DMC and other ab initio computations of the atomization energy and heat of 

formation of CO2
+.  Section. IV summarizes the main aspects of ELF methods and in Sec. 

V, the results of ELF projections are presented and discussed. Conclusions of the study 

form the content of the last section. 

 
 
 
II.  The DMC Method 
 

 

The DMC method is a stochastic approach for solving the Schrödinger equation in 

imaginary time τ. The latter can be written, 

 2 ( , ) ( ( )) ( , )TD x E V x xφ
φ τ φ τ

τ
∂

= ∇ + −
∂

 (1) 

 
 
where  is an energy offset,  is a diffusion constant, , and  V x is the 

potential.  Note that retaining only the first term on the rhs of Eq.(1) defines a diffusion 

equation if ϕ  is positive definite; retaining only the second term on the rhs yields an 

equation that describes branching or population growth/decay. The asymptotic solution of 

LE D 1/ 2D ≡ m ( )
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Eq.(1) is the time-independent Schrödinger equation. Because the potential V x  can vary 

over the range ±∞ , the branching term typically leads to large statistical uncertainty in the 

energy expectation value.  These fluctuations can be reduced significantly by importance 

sampling.   

( )

( ,f x τ
τ∂

)τ

3N

The analog of Eq.(1) with importance sampling is obtained by multiplying both 

sides of Eq.(1) by a known function .   One defines a new function given by : TΨ

  (2) Tf (x, ) = ( , )xτ Ψ Φ τ
 
where  is an exact solution to the Schrödinger equation. Following this procedure, 

Eq. (1)takes the form [7] 

( , )x τΦ

 2) ( , ) ( ( , ) ( )) ( ( )) ( ,Q T LD f x D f x F x E E x f xτ τ
∂

= ∇ − ∇ + −  (3) 

where  is the local energy defined as LE

 
ˆ ( )

L
H XE τ

τ

Ψ
≡

Ψ

r

 (4) 

X
r

 denotes the  coordinates of the system, and  is a vector field labeled the 

quantum force given by 

( )QF X
r

 
2

ln ( )QF τ≡ ∇ Ψ
r
X

)

 (5) 

 
The quantum force moves the walkers from regions of high to low potential, which reduces 

the magnitude of random fluctuations and helps stabilize the walker population.  To insure 

a positive definite distribution f, the fixed node approximation is made which imposes the 

known nodes of Ψ  onto  .  T Φ

   

The trial wave function  is chosen as a product of an independent-particle 

function ψ, and an explicit correlation function U r  where  is the 

TΨ

{ } { } { }( , ,ij i ir rα β ijr
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distance between electrons i and , and j ( )irα β  is the separation of electron i  from nucleus 

.  The form of U used here is a 10-parameter function adapted by Schmidt and 

Moskowitz [8] from earlier work of Boys and Handy [9] (SMBH).  This function contains 

both 2- and 3-body terms in the form of electron-electron, electron-nucleus, and electron-

other-nucleus distances and may be written, 

( )α β

kal m
ai ajr rr rN

k
∑

1

1 N

iN =

≡ ∑

expD Dτ
↑ ↓Ψ ≡

  (6) (
a

ka ka ka kal m n
ka aj ai ijU c r r r≡ +

r r r)

rwhere α  refers to nuclei and ij  refer to electrons and where  is defined by  

and b is a variational parameter. The SMBH correlation function contains first-order 

Jastrow terms that assist in satisfying electron-electron and electron-nuclear cusp 

conditions [10, 11].  Optimization of the correlation functions parameters was 

accomplished by fixed sample optimization using the absolute deviation functional [12] 

(AD) that minimizes the variance and energy of Ψ  

rr 1/(1 )r b= +
r

T

 
iT LAD E E−  (7) 

Here N is the number of walkers in the simulations and  is the local energy of the  

configuration.  The trial wave function Ψ

LE thi

T is typically written in the form,  

  (8) ( ( , )ij iU r r )α

 
where  denote spin block-factored determinants. The nodes of the independent 

particle function are the zeros of a HF trial wave function of molecular orbitals (MOs) or 

of natural orbitals from a complete active space self-consistent field (CASSCF) 

calculation.   

D D↑ ↓
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The Stevens, Basch, and Krauss (SBK) pseudopotentials[13, 14] were used in the 

construction of the DMC trial wave functions reported here in order to reduce the 

computational effort. The other ab initio calculations used the cc-pVXZ (X=D,T,Q) basis 

set series [15]. This series of basis sets is frequently used in complete basis set 

extrapolations, which were also carried out in this study. The cc-pVTZ basis was used in 

conjunction with the SBK pseudopotentials.   

 

III DMC and other ab initio results 

 

Two trial wave functions were used in the DMC computations performed in this 

study.  The first trial function used HF orbitals and the other used the NOs obtained from a 

CASSCF(7,8) calculation. The CASSCF calculation yielded 17 determinants of which the 

first determinant recovered 95% of the ground state energy of .  Examining the NO 

population at the MP2 level of theory revealed an incorrect NO population description.  In 

two of the orbitals the orbital population was greater than 2 and in three orbitals the orbital 

population was negative, implying that the MP2 method improperly describes the ground 

state populations of the NOs. The orbital populations obtained from the CASSCF(7,8) 

revealed that all orbital populations are between 0 and 2 [16].  These results are presented 

below in Table 1.  The NO’s obtained from this CASSCF give a more accurate, 

atomization energy and heat of formation than the MO’s obtained from HF.  

2CO+

 

 The geometry of CO  used in this study was obtained using a generalized gradient 

approximation B3LYP-DFT method [17] with the cc-pVDZ basis set.  The resulting  

2
+

C O−
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bond lengths of 1.17741A are in excellent agreement with experimental. Geometry 

optimization with the MP2 method, resulted in symmetry breaking of the C  bond 

length observed in earlier studies.  The LDA and CCSD(T)  bond lengths of 1.188 A 

are in good agreement with experiment though not as accurate the B3LYP-DFT. 

O−

)

[ ])a MC

C O−

2 2(CO

( )DMC E+

2
E T+

 For the DMC calculations the Gaussian basis sets were mapped onto a polynomial 

basis of cubic splines. For each nuclear center 2000 evenly spaced spline knots were used. 

The use of splines makes possible more efficient Slater determinant evaluation as 

confirmed by the reduction of computational effort of 45%-55% relative to the use of 

Gaussian basis functions. 

The atomization energy, , defined as the energy required to dissociate a 

molecule into its atomic constituents was computed to be 381 kcal/mol  using the 

expression: 

aE

2CO+

  (9) ( ) 2 ( ) ( ) ( ) ) (a f P f f PE CO H O I O H C H I CO+ = ∆ + + ∆ −∆ − 2

)+

 

The QMC estimate of  using effective core potentials without zero point energy 

correction is determined as the difference in valence energy of the constituent atoms and 

the molecular system and is given by, 

aE

  (10) ( ) ( ) ( ) ( 2a DMC DMC DMCE DMC E O E O E C CO= + + −

 

 To estimate the heat of formation,  of the cation the following expression was 

used[18] 

298
fH∆

  (11) 298 0 0( ) ( ) 2 ( ) ( ) (f f f P co
H DMC H C H O I O ZP emp E D∆ = ∆ + ∆ + + − +
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where Te  is the gas-phase temperature correction from 0 to 298 K and  is the 

zero point energy. Values for Eqs. (9) and (11) were obtained from standard 

thermochemical tables [19]

mp
2CO

ZPE +

,[20]. The experimental zero point energy was used at all levels 

of theory for the  estimates. The ZPE value was obtained using: 298
fH∆

 
3 6

1

1
2

N

i
i

ZPE hc ν
−

=

≡ ∑  (12) 

 

where ν  are the fundamental frequencies [6].  i

The atomization energy and heat of formation were calculated using the cc-pVXZ 

(X=D,T,Q) series of basis sets.  Complete basis set extrapolations were determined using 

an exponential fit.  Results of the ROHF, MP2, LDA, B3LYP, CCSD(T) and DMC 

calculations of the atomization energy and heat of formation are presented in Table 2.  The 

results of the MP2 calculations overestimate the atomization energy by 15.1 kcal/mol 

while the heat of formation is underestimated by 15 kcal/mol; LDA calculations gave 

similar results.  LDA overestimates the atomization energy by ~19% and underestimates 

the heat of formation. The B3LYP estimates of the atomization energy with an infinite 

basis are 1.7 kcal/mol below the experimental value and the heat of formation is 4.2 

kcal/mol above the experimental value. At the complete basis set limit, the CCSD(T) 

atomization energy is 0.7 kcal/mol below experiment and the heat of formation is 3 

kcal/mol above experiment. 
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 The DMC method with the HF MOs yields an atomization energy that is 7 kcal/mol 

less than experiment while the heat of formation estimate is 9 kcal/mole above experiment.  

The DMC method with CASSCF NOs in a single determinant leads to closer agreement 

with experiment for both the atomization energy and heat of formation by 8.1 kcal/mole. 

The DMC and experimental heats of formation are 226(1.8) kcal/mol and 225.3 kcal/mol, 

respectively; the DMC and experimental atomization energies are 382(1.8) kcal/mol and 

381 kcal/mol, respectively. 

 
IV Electron Localization Function (ELF) 

 
In this study we have used an approach based on the electron localization function 

(ELF) method developed by Becke and Edgecombe to analyze the bond character of  

[21].  The approach provides a picture of the molecule structure and reactivity by 

considering bonds and their evolution [22, 23].  The ELF has an associated topology that is 

partitioned into specific regions.  Molecular space is partitioned into basins: core basins 

around the nuclei and valence basins in the remaining space.  Properties such as basin 

populations, basin volumes and basin populations’ variance are evaluated with ELF.  

Previous studies have demonstrated that the partitioning of the molecular space is 

qualitatively stable under changes arising from the use of various theoretical methods to 

specify the ELF [22, 24, 25]  

2CO+

The electron localization function is a measure of the excess kinetic energy of in 

the system, essentially quantifying the efficiency of Pauli repulsion at a given point.  The 

ELF is defined as 

 2

1
1

ELF
σχ

≡
+

 (13) 
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where is a dimensionless localization index calibrated to the uniform electron gas as a 

reference, written as: 

σχ

 0

D
D

σ
σ

σ

χ =  (14) 

 
where  is the uniform electron gas spin density evaluated at , the one-electron 

spin density and given by 

0Dσ ( )rσρ

 ( )
51

0 4 333 36 ( )
5

Dσ π ρ= rσ  (15) 

 
The term  is the first term of the spherically averaged Taylor expansion of a pair 

probability: 

Dσ

 
( )2

4
D σ

σ σ
σ

ρ
τ

ρ
∇

= −  (16) 

 
The quantity, , gives an inverse relationship between localization; the higher the degree 

of localization the smaller the value of .  For this reason Eq. (16) is arbitrarily recast to 

the final ELF given in Eq. (13). The bounds on the value of ELF are: 

Dσ

Dσ

  (17) 0 ELF≤ 1≤
 

where  corresponds to perfect localization and 1ELF =
1
2

ELF =  corresponds to electron 

gas pair probability. Quantitative information similar to population analysis can be 

obtained from the partitioning scheme. The average basin population which only depends 

on the single particle density, is defined as 

 ( ) ( )
i

i iN ρ
Ω

Ω = ∫ r dr  (18) 
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where  is the volume of the ith basin iΩ

. 

The Lewis representation of a system can be obtained by projecting the ELF 

populations, , onto one or more Lewis structures. Given two or more resonance 

structures the ELF populations can determine the weight of each resonance structure to the 

total Lewis description of the system, in essence a quantization of the Lewis resonance 

forms. The present ELF calculations were carried out using the TopMoD [26] package.  

Wave functions for the ELF calculations were obtained using Gaussian 98 [27] and 

GAMESS [28] software packages.  

( iN Ω )

  

V. Topological Analysis: 
 
 

Previous studies have examined the dipole moment and bond order of  as a 

function of the asymmetric stretch [4].  In this study basin population analysis of 

unrestricted Hartree-Fock (UHF), MP2, and B3LYP-DFT wave functions was carried out 

by projecting these populations onto resonance forms of  and CS .  The wave 

functions were projected onto the ground state geometry from two perturbed geometries 

that consisted on stretching one of the C X  ( ,  bond lengths from the 

equilibrium distance by 0.005 A and 0.01 A.  From these projections it is possible to 

quantify the relative contributions of the  and  configurations in the ground 

state geometry. The topologies obtained for both structures are qualitatively the same at all 

levels of theory, having the same number of core and valence regions. Figure 1 presents 

the ELF valence and core regions for CO   

2CO+

2CO+

)S

D

2
+

−

S −

2
+

X O=

T D −
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2CO+  Analysis 

 

An ELF analysis reveals that there are 9 basins of attraction in the system: 3 core 

basins C C ,C O  and , two valence basins located between the carbon and 

oxygen atoms, V C  and V C  two valence basins located on each of the oxygen 

atoms: V O and V O . The projections of the basin populations for UHF, MP2, and 

B3LYP wave functions with the cc-pVDZ and cc-pVTZ basis sets were computed at the 

experimental geometry, and at small deformations of 0.005 A and 0.01 A along one of the 

 bonds.   

( )

1(

1( )

( ,

)

2(C O

)

)

1

2

1)O

2(

2( , )O

C O−

 

The relative contributions the  and  structures can be determined by 

projecting the populations of the basins onto the resonance structures by examining the 

number of electrons (core and valence) on each oxygen atom in the two configurations. 

The following linear system can be written for the number of electrons surrounding an 

oxygen atom: 

S T− D D−

  (19) 1 29 10w w α+ =
 
  (20) 1 210 9w w γ+ =

  
 
where α  and γ  are the sum of valence and core basins of O1 and O2.  

  (21) 1 12 ( , ) ( ) 2 ( )V C O C O V Oα = + +
 

  (22) 2 22 ( , ) ( ) 2 ( )V C O C O V Oγ = + +
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The coefficients of  Eqs. (21) and (22) are the number of electrons surrounding  and .  

Solving Eqs (21) and (22) for  and  for the UHF, MP2, and B3LYP-DFT methods 

gives the contributions of the resonance forms for the respective methods.  To avoid 

overestimation of the local topological descriptions, the normalization condition, 

, has not been imposed. Any deviation from the normalization condition of the 

sum of the solutions can be interpreted as the contribution of an unknown structure (X) or 

attributed to numerical error of the integration method. The contribution results for UHF, 

MP2, and B3LYP-DFT wave functions for both cc-pVDZ and cc-pVTZ basis sets are 

given in Table 3. 

1O 2O

1w 2w

1 2 1w w+ =

 

The results of the population projections of the UHF wave function for the cc-

pVDZ and cc-pVTZ basis sets, indicate a small preference for the S  configuration at 

the experimental geometry.  Small deformations of 0.005 A and 0.01 A of one of the 

 bonds, for the cc-pVTZ and cc-pVDZ basis sets, leads to increased emphasis of the 

 configuration.  

T−

C O−

S T−

 

Examining the MP2 results of the basin population projections shows results 

similar to those found with the UHF wave function. At the experimental C  1.177 . 

bond length the  structure is slightly preferred. Short bond length stretched of 0.005 

A and 0.01 A of one of the C  bonds leads to large emphasis of the S-T structure.  

O−

S T−

O−

 

The B3LYP wave function, with the cc-pVDZ basis set at the experimental 

geometry reveals a slight preference for the  form. Increasing the basis set to cc-S T−
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pVTZ yields equal contributions of the  and  conformations.  With the cc-

pVDZ basis set and lengthening  the C  bond reveals that the  form is slightly 

preferred over the  form. However, for the cc-pVDZ basis the same perturbations of 

the C  bond length reveal a preference for the  configurations over the  

configuration.   

D D−

O−

2
+

2( )C S

S T−

D D−

CS

S T−

D D−

2
gΠ

1−

S T−

S −

( )

)

2( )

O−

2
+

2
+

(

S T−

1−

 

CS  Analysis 

 

For CS  the  and 2  adiabatic surfaces are separated by 20,975  

compared to 27,300 cm  [2, 6] for CO .  Because the  surfaces of are not as widely 

separated as those for CO , vibrational and state mixing are expected to be more important 

than for CO , leading to a lower value of the asymmetric stretch frequency, ω  and a 

preference for the  configuration. However, the charge distributions of the C and S 

atoms in CS  are closer in value to each other than are those for C and O in CO

2
+

2
+

2
+

uΠ cm

3

2
+

2
+

2
+; leading 

to the expectation that  configuration should be less dominant. T

 

ELF analysis reveals that there are 9 attraction basins in the system, similar to 

: 3 core basins C C ,C S  and  one valence basin located between the C and 

S atoms, V C  and V C  two valence basins located on each of the S 

atoms:V S and V S . The projections of the basin populations for UHF, MP2, and 

B3LYP-DFT wave functions with the cc-pVDZ and cc-pVTZ basis sets, are computed at 

the experimental geometry, and small distances slightly extended by 0.005 A and 0.01 A 

CO 1( )

2( , )S1( , S

1)
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along one of the C  bonds.  The contribution results for UHF, MP2, and B3LYP-DFT 

wave functions for both cc-pVDZ and cc-pVTZ basis sets are given in Table 4. 

S−

S −

S −

 

The results of the UHF wave function at the experimental geometry of 1.564 A 

determine that the  configuration is slightly preferred with the cc-pvDZ and cc-pvTZ 

basis sets. Lengthening one of the C  bonds give a small preference of the  

configuration.  

T

S− D D−

 The results of the MP2 wave function at the experimental geometry determine that 

the D-D form is slightly favored using the cc-pVDZ basis set, however this preference is 

lost with the cc-pVTZ basis set. Lengthening one of the  bonds reveals a preference 

for the  configuration regardless of the basis set used. 

C S−

D D−

 The results of the B3LYP-DFT wave function at the experimental geometry 

determine that the  configuration is slightly preferred regardless of the basis set.  

Perturbation of one of the  bond lengths reveals the dominance of the D-D 

configuration for both the cc-pVDZ and cc-pVTZ basis sets.  

T

C S−

 

Conclusions 

 A CASSCF TF is found to give a DMC atomization energy of CO2
+ of 226(1.8) 

kcal/mol which is in excellent agreement with the experimental value of of 225.3 kcal/mol. 

The DMC heat of formation at 298K was computed to be 382(1.8) is also in excellent 

accord with the experimental value 381 kcal/mol.  We note that the B3LYP-DFT value of 

the atomization energy at the complete basis limit lies within 1.7 kcal/mol of experiment 

and the heat of formation is within 3.23 kcal/mol of experiment for the subject system. The 
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CCSD(T) results for the infinite basis set extrapolation are within experimental error, 

however the estimated heat of formation is 2.3 kcal/mol larger than experiment.   

Through ELF analysis the quantitative contributions of the resonance forms to the 

ground state geometry of  and  at the UHF, MP2 and B3YLP-DFT levels of 

theory have been determined. We are able to directly quantify that for  the UHF and 

MP2 methods the  structure is preferred for both the ground state geometry with  

symmetry and perturbed geometries.  The UHF asymmetric stretching frequency is 

computed to lie 464 cm

2CO+
2CS +

2CO+

S T−

2
+

hD∞

-1 lower than experimental value of 1423 cm-1 [29].  Including 

electron correlation at the MP2 level of theory results in an imaginary value of the 

asymmetric stretch frequency. The B3LYP-DFT method successfully determines the 

 structure to be preferred in the ground state of CO .  The value of the asymmetric 

stretching frequency calculated at the B3LYP-DFT level of theory compares well to 

experimental results. In is in part due to that the  structure is preferred.  ELF 

calculations of the CS  demonstrate that UHF, MP2, and B3LYP wave functions predict 

the  resonance form to be preferred. As a result, the asymmetric stretch is fairly well 

predicted by the three methods compared to experiment [30, 31]  

D D−

D −

2
+

DD −

D
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Table 1: Natural orbital occupation numbers for MP2 and 

CASSCF wave functions  

 NO Occupation 
Orbital MP2 CASSCFa 

1 2.06184 1.99754 
2 2.00001 1.98001 
3 2.00001 1.99001 
41           -0.00062 0.00002 
42           -0.06230 0.00002 

      
aCASSCF wavefunction in which 7 electrons have been distributed 

amongst 8 orbitals 
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Table 2: Ab initio atomization energies and heats of formationa 
 

Method aE  (kcal/mol) 298
fH∆  (kcal/mol) 

ROHF   228.8 379.7 
MP2 3961. 212.7 
LDA 455.9 152.9 
B3LYP 379.3 229.5 
CCSD(T) 380.3 228.5 
   
DMC   
     HFb 374.0(1.2) 234.4(1.2) 
     NOc 382.1(1.8) 226.6(1.6) 
Expr. 381 225.3 

      
aROHF, MP2, LDA, B3LYP, and CCSD(T) are results of extrapolations to the 

complete basis set limit. 

bDMC trial wave function using orbitals obtained from HF 

cDMC single determinant trial wave function using NOs obtained from CASS(7,8)
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Table 3: 
geometrie

Method 
 
 
 

UHF 
MP2 

B3LYP 

aThe C-O

double-do

 bC-O2 = 1

 cC-O2 = 1

 dC-O2 = 1

 eAsymm

asymmet
 

 
 

Single-Triple (S-T) and double-double (D-D) contributions to the ground state and two perturbed 
s of  CO2

+ a.    
 

Basis Sets/contributions of resonance structures  
cc-pVDZ cc-pVTZ  

b c d  b c d 
S-T D-D S-T D-D S-T D-D 

3ω
 e S-T D-D S-T D-D S-T D-D 

3ω
e 

0.482 0.512 0.402 0.592 - - 959 0.495 0.485 0.465 0.515 0.347 0.647 829 
0.487 0.507 0.407 0.587 0.387 0.607 1674i 0.495 0.485 0.475 0.505 0.357 0.637 1795i 
0.512 0.482 0.472 0.522 0.452 0.654 1495 0.497 0.497 0.482 0.528 0.477 0.517 1472 

 
1 bond length is fixed at 1.177 A for all geometries. S-T is the single-triplet and D-D is the   

uble bonded resonance forms (see figure 1). 

.177 A 

.182 A 

.187 A ELF calculation failed to converge for the UHF wave function. 

etric stretch (cm-1). Vibrational frequencies listed above are unscaled Experimental value of the 

ric stretch is 1423 cm-1 [29]. 
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Table 4: Single-triple (S-T) and double-double (D-D) contributions to the ground state and two perturbed 
geometries of CS2

+ a.   
 

Method Basis Sets/contributions of resonance structures  
 cc-pVDZ cc-pVTZ  
 b c d  b c d 
 S-T D-D S-T D-D S-T D-D 

3ω
e S-T D-D S-T D-D S-T D-D 

3ω
e 

UHF 0.508    0.488 0.468 0.528 0.463 0.533 1182 0.503 0.493 0.473 0.523 0.463 0.533 1216 
MP2 0.503 0.493 0.473 0.523 0.468 0.528 1058 0.493 0.503 0.468 0.528 0.468 0.528 1225 

B3LYP 0.508 0.488 0.463 0.533 0.463 0.528 1236 0.503 0.493 0.483 0.513 0.478 0.518 1239 
aThe C-S1 bond length is fixed at 1.564 A for all three geometries. S-T and D-D are the single-triple and 

double-double   bonded resonance form respectively (see figure 2) 

bC-S2 = 1.564 A 

cC-S2 = 1.569 A 

dC-S2 = 1.574 A 

eAsymmetric stretch (cm-1). Vibrational frequencies listed above are unscaled Experimental value of the 

asymmetric stretch is 1203 cm-1 [30, 31]. 
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FIGURE CATIONS 
 
 
Figure 1 Single-triple (S-T) and double-double (D-D) resonance forms of CO2

+.   
 
Figure 2 Single-triple (S-T) and double-double (D-D) resonance forms of CS2

+.   
 
Figure 3 Electron localization function (ELF) calculated for CO2

+.  There are 9 basins of 

attraction in the system: 3 core basins C C labeled,C O  and , two valence basins 

located between the carbon and oxygen atoms labeled here as V C  and V C , and 

two valence basins located on each of the oxygen atoms: labeled, V O and V O . 

( ) 1( ) 2(C O

1( ,O

1(

)

) 2( , )O

2( ))
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